Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract An unsupervised machine learning method is introduced to align medical images in the context of the large deformation elasticity coupled with growth and remodeling biophysics. The technique, which stems from the principle of minimum potential energy in solid mechanics, consists of two steps: Firstly, in the predictor step, the geometric registration is achieved by minimizing a loss function composed of a dissimilarity measure and a regularizing term. Secondly, the physics of the problem, including the equilibrium equations along with growth mechanics, are enforced in a corrector step by minimizing the potential energy corresponding to a Dirichlet problem, where the predictor solution defines the boundary condition and is maintained by distance functions. The features of the new solution procedure, as well as the nature of the registration problem, are highlighted by considering several examples. In particular, registration problems containing large non-uniform deformations caused by extension, shearing, and bending of multiply-connected regions are used as benchmarks. In addition, we analyzed a benchmark biological example (registration for brain data) to showcase that the new deep learning method competes with available methods in the literature. We then applied the method to various datasets. First, we analyze the regrowth of the zebrafish embryonic fin from confocal imaging data. Next, we evaluate the quality of the solution procedure for two examples related to the brain. For one, we apply the new method for 3D image registration of longitudinal magnetic resonance images of the brain to assess cerebral atrophy, where a first-order ODE describes the volume loss mechanism. For the other, we explore cortical expansion during early fetal brain development by coupling the elastic deformation with morphogenetic growth dynamics. The method and examples show the ability of our framework to attain high-quality registration and, concurrently, solve large deformation elasticity balance equations and growth and remodeling dynamics.more » « less
- 
            Immunotherapy is a powerful technique where immune cells are modified to improve cytotoxicity against cancerous cells to treat cancers that do not respond to surgery, chemotherapy, or radiotherapy. Expressing chimeric antigen receptor (CAR) in immune cells, typically T lymphocytes, is a practical modification that drives an immune response against cancerous tissue. CAR-T efficacy is suboptimal in solid tumors due to the tumor microenvironment (TME) that limits T lymphocyte cytotoxicity. In this study, we demonstrate that neutrophils differentiated from human pluripotent stem cells modified with AAVS1-inserted CAR constructs showed a robust cytotoxic effect against prostate-specific membrane antigen (PSMA) expressing LNCaP cells as a model for prostate cancer in vitro. Our results suggest that engineered CAR can significantly enhance the neutrophil anti-tumor effect, providing a new avenue in treating prostate cancers.more » « less
- 
            Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas theMfn2-/-cells maintain a circular shape. Increased cytosolic Ca2+resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
